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Abstract 

We  introduce  a  statistical  data  model  and an associated 
optimization-based  clustering  algorthm  which  allows  data  vectors 
to  belong  to  zero,  one  or  several  “parent”  clusters.  For  each  data 
vector  the  algorithm  makes  a  discrete  decision  among  these 
alternatives.  Thus,  a  recursive  version  of  this  algorithm  would 
place  data  clusters in a  Directed  Acyclic  Graph  rather  than a tree. 
We  test  the  algorithm  with  synthetic  data  generated  according  to 
the  statistical  data  model.  We  also  illustrate  the  algorithm  using 
real  data  from  large-scale  gene  expression  assays. 

1 Introduction 

Clustering  algorithms  traditionally  construct  clusters  which  are  related  by 
placement in a  tree  (hierarchical  clustering)  or  embedding in a  low-dimensional 
space  (self-organizing  maps).  We  seek  to  generalize  the  deterministic  annealing 
approach  to  clustering  under  mixture  models  [1][2][3] so that  when  used  recursively 
it can  construct  a  Directed  Acyclic  Graph  (DAG)  of  clusters  rather  than a tree. As a 
key  development  to  this  end,  we  consider  here  the  recursively  applicable  step of 
clustering  a  set  of  feature  vectors  into  groups so that  each  vector  belongs  to  zero, 
one,  or  two  clusters.  Thus  each  data  vector  can  have  multiple  “parent”  clusters.  We 
report  on  a  generative  model  for  such  data  using  stochastic  parameterized 
grammars,  derive an appropriate  constrained  optimization  problem  for  inferring 
parent  clusters  from  data,  and  define  and  test  a  suitable  optimization  algorithm  for 
this  problem. 
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2 Theory 

2 .1  DataModel  

A  generative,  statistical  data  model  is  defined  using  stochastic  parameterized 
grammars [4] as  follows.  A  stochastic  grammar  has  a  “start”  symbol,  and a unique 
rule  which  transforms  this  symbol  into a level-zero  “cluster”  symbol  with  numerical 
parameters  including a mean  and  (possibly  diagonal  or  scalar)  covariance  which  are 
specified by the  grammar  rather  than  generated by a  probability  distribution.  This 
level-zero  cluster  can  serve  as  the  left  hand  side  for  several  different  rules.  One  rule 
simply  destroys  the  cluster.  Another  permits  it  to  create  data  vectors  according  to 
its mean  and  covariance;  these  model  “distractor”  data  which  do  not  belong  to  any 
actual  (level-one)  cluster.  Finally,  a  level-zero  cluster  may  generate  a  level-one 
cluster  whose  level-one  mean is determined by drawing  from  the  level-zero 
Gaussian  distribution,  and  whose  level-one  covariance is specified  by  the  grammar. 
(Alternatively  one  may  use  a  prior  such  as a cut-off  inverse  power law for  diagonal 
covariance  entries.)  The  level-zero  cluster  survives  this  rule-firing  event  and  can 
participate in further  rule  firings.  For  spherical  Gaussians,  this  rule  may  be 
summarized as: 

CIusterO( y ,a ,c )+   CIus te rO(y ,o ,c  + l), CIusterl(  y’,o’,c,k) 

Here y and y’ are  mean  feature  vectors, E is an  energy  function  whose  Boltzmann 
probability  distribution  contributes  to  the  stochastic  behavior  of  the  grammar  as 
described  below.  Based  on  the  relative  probabilities  of  these  three  rules in the 
stochastic  grammar,  the  level-zero  cluster  generates  some  number  of  level-one 
parameterized  clusters  and  distractors,  and  then  dies. 

The  level-one  clusters  also  can  serve  as  the  left-hand-side  of  several  rules in the 
stochastic  parameterized  grammar.  One  rule  kills  the  cluster.  One  rule  allows it to 
generate a data  vector  (interpreted  as a real  cluster  member,  not  a  distractor) 
according  to  a  Gaussian  using  the  cluster’s  mean  and  covariance;  the  cluster  symbol 
survives  as  well.  And  one  special  rule  takes two clusters on its left-hand-side  and 
generates  a  single  data  vector by a  suitably  weighted  average  of  the  parent  mean  and 
covariance  parameters. Both parents  survive  the  event.  This  rule is the  origin  of 
multiple  parentage in the  data  model.  For  scalar  covariance  (spherical  Gaussians), 
this  rule  may be summarized as: 

Clusterl( y ,o . c ,k ) ,  cIusterl(y’,o’,c’,k’) + 
CIus te r l (y ,o , c ,k  + 11, Clusterl( y’,d,c’,k’+ 11, 

Datum(x,( c,k +I) ,  (c’,k’+ 1)) 

Finally,  as  discussed  for  a  previous  single-parent  stochastic  grammar [I ] ,  a  global 
permutation  removes  all  identifying  indices (c ,k)  from  all  the  generated  data  vectors. 

Each  rule in the  grammar  has an energy  function  which  induces  an  unnormalized 
Boltzmann  probability  factor eXp(-E/ T ) .  By analogy with  statistical  mechanics, 
we  take  the  probability  of an entire  derivation d through  the  grammar  to be the 



with  constraints 

a 

A  similar  change  of  variable  applies  for  data  generated  by  up  to  three  parents: 

a 
We  turn  now  to  the  construction  of  iterative  algorithms  for  optimizing  under  these 
objective  functions  and  constraints. 

2.3 Algor i thm 

To  perform  the  constrained  optimization,  we  may  consider  multi-parent  clustering 
as  a  modification  of  the  existing  soft-max  style  clustering in which  the  WTA 
(winner-take-all)  or  WMTA  (winner  might  take  all)  constraint is replaced  with n- 
winners  by  means  of  a  dual  encoding  of  a  membership M and its complement a = 1 - M .  If a indexes  the  clusters  and i indexes  the  data,  then 

a 

which  can  be  implemented  via 

Mai + Bai = 1 
- 

Ma;, Mai,s 2 0 .  

a 

The latter  three  lines  can be translated  into  alternative  soft-max  objective  functions 
analogous  to  a  Mean  Field  Theory  Potts  glass  effective  energy: 

ai ai 

Here D includes  the  distance  metric  in  the  first  term  of  the  objective  function (l), 
and  can  also  locally  reflect  the  quadratic  terms in ( 1 )  in an  iterative  algorithm as is 
done in the  soft-assign  approach  to  quadratic  assignment  optimization [3][7]. 
Taking  derivatives  of E with  respect  to  each  type  of  variable,  and  initializing  the 



Lagrange  multipliers  to  zero,  we  can  derive  aggressive  update  dynamics  (large 
descent  steps)  similar  to  the  soft-assign  algorithm [6][3]: 

M: = exp[ ( p  - D,) / T I ;  
Mai = 1; 

sp = 1; 

-0 

and  then  iteratively, 

< 
Mi.  =kMy/(spTey +CMr); 
s; = , s y  / (syev + M r ) ;  

Mm = M; / (Mi;  + a:"); 
Em = a y  /(Mi;  + ay); 

P 

P 

> 
Then  the  cluster  means  are  updated  and  the  above  steps  iterated,  with  occasional 
decreases in temperature  according  to a fixed  e.g.  exponential  schedule.  If  this 
algorithm  failed  to  converge it would  be  possible  to back off  and  do  the  gradient 
descent  steps  more  slowly  than  the  constraint-enforcement  (ascent-like)  steps. 
However  our  numerical  experiments  show  good  convergence in the  present  context. 
Convergence  theory  for  soft-assign is dealt  with in [7][8]. 

The  number  of  clusters  could  be  varied  with  repeated  runs,  e.g. so as to  produce  a 
reasonably  small  average  data-to-cluster-center  distance  without  too  many  cluster 
centers  and  a  relatively  high  likelihood  for  the  overall  clustering as measured  by 
cross-validation [9]. 

3 Results 

3.1 D a t a  

To  demonstrate  the  algorithm,  we  show an example  using  two  clusters  of  data 
points  generated  from 2-D Gaussian  distributions.  One  third  of  the  points  were 
generated  from  a  zero mean Gaussian.  Another  third  were  generated  from  a 
Gaussian  centered  at (10,lO). The  final  third  were  generated  from a combination  of 
the  first two Gaussians. 

3.2 Clustering 

The  results  shown  are  the  estimated  means  and  the  probability  of  several  types  of 
errors.  There  are  three  types  of  errors  that  can  occur.: 

(1) A  point  that  should  be classified as  coming  from both clusters  could  be  assigned 
to  one  or  no  clusters. 

(2) A point  that  comes  from  one  cluster  may  be  assigned  to  no  clusters. 

(3)  A point  that  comes  from  one  cluster  could  be  assigned  to two clusters. 

\ 



The  probabilities  for  each  of  these  types  of  errors  is  plotted in Figure las a function 
of  the  parameter p ,  which  represents a reward  for  being  assigned  to  a  cluster.  In 
these  experiments  we  have  taken V = p . From  the  figure, it can  be  seen  that  when 
the  reward  for  joinning a cluster  is  too  small,  the  points  that  should  belong  to  only 
one  cluster  tend  to  be  assigned  to  no  clusters. As the  reward  for  joining a cluster 
gets  larger,  all  points  are  assigned to two clusters. 

1.2 
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Figure 1. Three  types  of  error  as  a  function  of p . 

In  Figure 2, we  show  the  estimated  means  for  the  two  clusters  as  a  function  of  the 
parameter p .  The  average  value  of  the  first  coordinate  for  each  cluster is plotted. 
For p too  large  or  too  small  the  means  tends  toward  each  other  and  the  joint  mean 
of  the  entire  data  set.  There is  an intermediate  window  of  successful  operation. 
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Figure 2. Cluter  means  (first  coordinate)  as a function  of p .  
We  are  currently  performing  a  similar  parameter  exploration  for  higher-dimensional 
feature  vectors  and  more  classes. So far  we  observe  a  reasonable  rate  of  successful 
multiparent  clustering  runs  for 15 clusters in 10 dimensions. 

In  addition,  we  have  also  run  the  algorithm  on  real  biological  data  consisting  of 
1244 feature  vectors,  each  truncated  to 5 dimensions,  representing  log  ratios  of 
mRNA  gene  expression  measurements  from  Stuart  Kim's  laboratory  on  the 



nematode  worm C. elegans. We used 15 clusters,  and  varied p .  Depending  on  the 
value  of p ,  we  observe  varying  fractions  of genes falling  into  the  slack  class, 
having  single  parent  clusters,  and  having two parent  clusters. 

4 Discussion 

We  have  introduced a statistical  data  model  and  an  optimization  algorithm  for 
analysing  clustered  data  in  which a data  vector  can  belong to zero, one, or  several 
clusters.  This  “multiparent  clustering”  algorithm,  applied  recursively,  would  create 
a Directed  Acyclic  Graph  rather than a tree of hierarchical  cluster  centers. For 
many  applications  in  data  analysis,  visualization  and  information  retrieval  the DAG 
is a more  reasonable  or  flexible  structure  to  infer.  We  demonstrated  the  algorithm 
using  synthetic  data  generated  according  to  the  multi-parent  clustering  statistical 
data  model. 
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